Статическая и динамическая балансировка деталей. Балансировка вращающихся деталей при ремонте машин. Выбор допуска и точности балансировки

Неуравновешенность вращающихся деталей (шкивов насосов и трансмиссий- агрегатов, шинко-пневматических муфт, зубчатых колес) получается при смещении их массы в одну сторону, в ре­зультате чего смещается центр тяжести относительно оси вра­щения, а также при смещении оси вращения относительно цент­ра тяжести. Масса детали смещается из-за неоднородности ма­териала, неточности механической обработки и в результате одностороннего износа в процессе эксплуатации. Ось вращения относительно центра тяжести смещается вследствие перекосов при сборке или неточности изготовления.

При больших оборотах вращения неуравновешенных деталей возникают неуравновешенные центробежные силы, приводящие к вибрации детали и агрегата в целом и преждевременному его износу. Поэтому вращающиеся детали должны быть тщательно сбалансированы.

Существуют два способа балансировки: статический и дина­мический. При статической "балансировке деталь уравновеши­вают относительно оси вращения за счет уменьшения ее массы на той стороне, куда смещен центр тяжести, или увеличения массы на диаметрально противоположной стороне. При этом способе деталь находится в статическом состоянии и в слу­чае ее балансировки (уравновешивания) деталь будет оставать­ся в любом положении, в которое она поворачивается относительно оси вращения. Схема уравновешивания деталей разной длины (А, А 1) показана на рис. 130.

Рис. 130. Схема балансировки деталей разной длины: 1 - неуравновешенная масса; 2 - уравновешенная масса

Статическое уравновешивание производят на горизонтальных призмах, валиках или роликах. Наиболее простое устройство для статической балансировки - параллельные стенды, пред­ставляющие собой две закрепленные да основаниях направляю­щие в виде ножей, по которым- может перекатываться уравнове­шиваемая деталь.

Ножи выверяют при помощи уровня в двух взаимно перпен­дикулярных направлениях. Для балансировки массивных дета­лей (шкивы насосов) применяют роликовые или дисковые стен­ды, у которых вместо ножей имеются шарикоподшипники или ролики.

Статическую балансировку производят следующим образом. Уравновешиваемую деталь устанавливают на стенд «и поворотом на некоторый угол определяют ее уравновешенность. При неуравновешенности тяжелая часть детали возвращается вниз, а при уравновешенности она остается в том положении, в кото­рое поворачивается. Неуравновешенную массу детали удаляют сверлением по отметке с обеих ее сторон. Если при сверлении ослабнет конструкция детали, то в этом случае на диаметраль­но противоположной стороже при помощи винтов устанавлива­ют уравновешивающую массу (груз) в виде отдельных пласти­нок.

Для дискообразной детали, имеющей малую длину по сравнению с ее диаметром, способ статической балансировки будет достаточным, так как неуравновешенная и уравновешенная мас­сы находятся на поперечной оси детали или близко к ней. В этом случае при вращении детали центробежные силы масс будут находиться в одной или близких плоскостях и не окажут дополнительного влияния на вал и подшипники.

Для цилиндрической детали, имеющей сравнительно боль­шую длину (шкивы трансмиссий клиноременных передач), одно­го способа статической балансировки будет недостаточно, так как неуравновешенная и уравновешенная массы при баланси­ровке могут быть удалены от поперечной оси детали на рас стояние а. При вращении детали центробежные силы этих масс, "находящихся в разных плоскостях, создают пару сил, которые будут поворачивать деталь относительно оси вращения и соз­давать дополнительные нагрузки на вал и подшипники. В этом случае ликвидировать -влияние пары сил можно только динами­ческой балансировкой, при которой положение и величину урав­новешивающей массы определяют в динамическом состоянии детали - во время ее вращения.

Процесс динамической балансировки осуществляют на спе­циальных станках или же непосредственно в машинах и меха­низмах на собственных подшипниках при помощи специальных приборов: виброметров, виброскопов.

Контрольные вопросы к главе X

1. Какие виды слесарных работ выполняют при сооружении буровых?

2. На какие типы подразделяются болты?

3. В каких случаях применяют болты, шпильки, винты?

4. Для чего предназначены шайбы?

5. Какие применяют способы стопорения резьбовых соединений?

6. Какие по конструкции используют гаечные ключи?

7. Какие применяют шпонки для напряженных и ненапряженных соеди­нений?

8. В чем преимущество шлицевых соединений перед шпоночными?

9. Какие применяют профили шлицов?

10. Какими способами выполняют прессовые соединения?

11. Какие существуют муфтовые соединения?

12. Как центрируют валы, соединяемые шинно-пневматическими муфтами?

13. Из каких элементов состоит карданная передача?

14. Какие существуют зубчатые передачи?

15. Какими способами проверяют зазоры зубчатых зацеплений?

16. Из каких элементов состоит приводная роликовая цепь?

17. Для чего служат вкладыши подшипников скольжения?

18. Какие существуют конструкции подшипников качения?

19. Какими способами выполняют запрессовку подшипников?

20. Каким образом регулируют зазор в упорных и конических подшипниках?

21. В чем заключается балансировка вращающихся деталей?

22. Как и когда выполняют статическую и динамическую балансировку?

ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА И ТРУДА, ЭКОНОМИКА И ПЛАНИРОВАНИЕ СООРУЖЕНИЯ БУРОВЫХ

Неуравновешенность (дисбаланс ) вращающихся частей является одним из факторов, лимитирующих надежность автомобилей в эксплуатации. Неуравновешенность — состояние, характеризующееся таким распределением масс, которое вызывает переменные нагрузки на опоры, повышенные износ и вибрацию, способствует быстрой утомляемости водителя.

Дисбаланс изделия — векторная величина, равная произведению локальной неуравновешенной массы т на расстояние до оси изделия г или произведению веса изделия G на расстояние от оси изделия до центра масс е, т. е. D = mr = Ge.

Виды неуравновешенности

а - статическая, б - динамическая, смешанная.

Проводится при возникновении в процессе изготовления (восстановления) деталей, сборки узлов и агрегатов и изменяет свое количественное значение в процессе эксплуатации и текущего ремонта.

В зависимости от взаимного расположения оси изделия и его главной центральной оси инерции различают три вида неуравновешенности: статическую, моментную и динамическую.
При статической неуравновешенности ось ОВ вращения детали смещена на эксцентриситет е и параллельна главной центральной оси инерции. Данная неуравновешенность присуща дискообразным деталям (маховики, диски сцепления, шкивы, крыльчатки, сцепления в сборе и др.) и проявляется как в статическом, так и в динамическом состоянии. Статическая неуравновешенность определяется главным вектором дисбалансов (статический дисбаланс).
При моментной неуравновешенности ось изделия и его главная центральная ось инерции пересекаются в центре масс. Данная неуравновешенность определяется главным моментом дисбалансов М или двумя равными по значению антипараллельными векторами дисбалансов в двух произвольных плоскостях.
Моментная неуравновешенность является частным случаем более общей — динамической неуравновешенности, при которой ось изделия и его главная центральная ось пересекаются не в центре масс или перекрещиваются. Присуща она деталям и узлам типа валов, состоит из статической и моментной неуравновешенностей и определяется главным вектором дисбалансов и главным моментом дисбалансов или двумя приведенными векторами дисбалансов (в общем случае разных по значению и непараллельных), лежащих в двух выбранных плоскостях.

Дисбаланс изделия характеризуется числовым значением (в г - мм, г см, кг-см) и углом дисбаланса (в град.) в системе координат, связанных с осью изделия.

Главный вектор дисбалансов В„ может быть разложен на два параллельных DCTl и Дт2, приложенных в выбранных плоскостях, а главный момент дисбалансов М может быть заменен моментом пары равных антипараллельных дисбалансов Ц,1 и DM2 в тех же плоскостях. Геометрические суммы Дт! + Ai = Д и Дт2 + А2 = А образуют два приведенных дисбаланса А и А в выбранных плоскостях, которые полностью определяют динамическую неуравновешенность изделия.
При вращении неуравновешенного изделия возникает переменная по величине и направлению центробежная сила инерции. Приведение изделий, обладающих неуравновешенностью, в уравновешенное состояние осуществляется их балансировкой, т. е. определением дисбаланса изделия и устранением (уменьшением) его путем удаления или добавления корректирующих в определенных точках масс. В зависимости от вида неуравновешенности тела различают два вида балансировки: статическую и динамическую.

Статическая балансировка .

Статическая балансировка производится на стендах с призмами или роликами либо на специальных станках для статической балансировки в динамическом режиме (при вращении тела). Такая балансировка повышает точность балансировки и открывает возможность автоматизации процесса.

Динамическая балансировка вращающихся деталей

При такой балансировке определяются и устраняются (уменьшаются) два приведенных дисбаланса А и А в выбранных плоскостях коррекции путем удаления или добавления двух приведенных корректирующих масс, в общем случае разных по значению и расположенных под разными углами коррекции, в системе координат, связанной с осью детали. При динамической балансировке устраняется (уменьшается) как статическая, так и моментальная неуравновешенность, и изделие становится полностью сбалансированным.

Допустимый дисбаланс деталей: коленчатого вала , карданного вала и.др.

При больших скоростях вращения даже незначительная неуравновешенная масса детали относительно оси вращения может явиться причиной появления значительной неуравновешенной центробежной силы, вызывающей дополнительную динамическую нагрузку на подшипники, что приводит к преждевременному износу деталей. Неуравновешенные центробежные силы являются одной из главных причин вибрации гидропередачи, которая представляет собой весьма вредное явление.

Статическая балансировка. Показателем статической уравновешенности детали является способность ее сохранять состояние покоя в любом положении на горизонтальных направляющих. Балансируемую деталь устанавливают таким образом, чтобы неуравновешенная масса Я (рис. 41) располагалась в горизонтальной плоскости, проходящей через ось балансируемой детали. На противоположной стороне детали прикрепляют груз п, при котором неуравновешенная масса Я могла бы сообщить балансируемой детали поворот на небольшой угол. Затем поворачивают балансируемую деталь в том же направлении на 180°, т. е. в такое положение, чтобы груз п и масса Я оказались бы снова в горизонтальной плоскости. В этом случае масса Я перевесит и изделие будет стремиться повернуться в обратном направлении. Далее подбирают добавочный груз Р к грузу так, чтобы балансируемое изделие оставалось в том положении, в какое его ставят.

Если статическая балансировка выполняется на призмах качения, то возникающие силы трения в точках опоры

Рис. 41. Схема статической балансировки детали препятствуют перекатыванию детали. Точность балансировки зависит от соотношения вращающего момента, создаваемого неуравновешенной массой, и момента сил трения в точках опоры.

Динамическая балансировка. Вращающиеся части гидропередачи, имеющие форму роторов, хотя и уравновешенные статически, могут иметь дисбаланс, который способствует износу шеек валов и подшипников, а также появлению вибраций, могущих привести к разрушению деталей. Неуравновешенные массы создают центробежные силы. Независимо от места расположения в роторе (например, вал в сборе с насосными колесами) неуравновешенных масс, их величины и количества суммарное действие сводится к двум силам, действующим на опоры, разным по величине и направлению. Эти силы вызывают колебания подшипников, а через них и корпусов гидропередачи.

Для динамической балансировки используют станки Минского станкостроительного завода. Устранение неуравновешенности осуществляется высверливанием или снятием металла в технологически предусмотренных местах (плоскостях исправления).

Задачами динамического уравновешивания являются выбор плоскости корректирования неуравновешенных масс и определение величины и положения приведенных неуравновешенных масс в этих плоскостях.

Простейшее устройство для динамического уравновешивания представляет собой две упругие подшипниковые опоры (рис. 42, а). Одну из опор с помощью соответствующих приспособлений при уравновешивании запирают, а другой дают возможность свободно колебаться в вертикальной плоскости, и при прохождении резонанса измеряют размах колебаний этой опоры. Разделив окружность одного из колес на восемь равных частей и пронумеровав их (рис. 42, б), устанавливают поочередно в каждом из пронумерованных мест (на одинаковом радиусе) пробный груз и измеряют размах резонансных колебаний при каждой установке пробного груза.

Результаты измерений записывают и наносят в системе прямоугольных координат кривую (рис. 42, в), по которой судят о положении и величине уравновешивающего груза. Наиболее низкая точка полученной кривой (точка К) определяет собой место расположения уравно-


Рис. 42, Схема динамического уравновешивания вешивакяцего груза. Путем нескольких попыток изменения груза в данной точке определяется масса уравновешивающего груза.

Уравновесив деталь в одной плоскости, аналогичным образом поступают при ее балансировке в другой плоскости. Установка уравновешивающего груза на другой стороне вызывает нарушение уравновешенности первой стороны. Поэтому производится повторная проверка с установкой необходимого дополнительного корректировочного груза, который бы компенсировал нарушение уравновешенности.

Балансировка колес необходима для того, чтобы во время движения автомобиля, водитель не испытывал дискомфорта, от такого явления как биение колес. Происходит это тогда, когда имеется дисбаланс относительно оси или плоскости вращения.

Зачем нужна балансировка колес

В процессе производства дисков, камер и покрышек, невозможно сделать идеально сбалансированный продукт. Основную часть дисбаланса привносит покрышка. Поскольку она наиболее удалена от центра вращения. Отсюда возникает необходимость балансировки. Ведь неправильная балансировка колес не только делает езду на автомобиле некомфортной, она так же способствует быстрому износу элементов подвески. В первую очередь страдает ступичный подшипник, который непременно придется менять в том случае, если вы ездили на несбалансированных колесах.

Согласитесь, куда дешевле сделать балансировку, нежели менять изношенные детали и покрышки. До сих пор встречаются люди, которые балансируют только передние колеса. Якобы в этом нуждаются только ведущие, и нет нужды тратить дополнительные деньги на балансировку задних. Это заблуждение, и такая экономия лишь убьет элементы задней подвески.

Существует несколько видов балансировки:

  • на станке, со снятием колеса;
  • финишная, производится непосредственно на автомобиле;
  • автоматическая (порошковая, бисерная).

Так же существует разделение на динамическую и статическую.

Как делается балансировка

Статическая

В случае, когда колесо имеет статический дисбаланс, его вес по оси вращения неравномерный, оно имеет тяжелое место. Это место с большей силой будет бить по дороге, и чем больше будет скорость его вращения, тем сильней будет статический дисбаланс.


Во избежание данного явления и делается статическая балансировка. Данную услугу в нашей стране предоставляют все шиномонтажные мастерские. Колесо помещается на специальный станок, в процессе вращения автоматика определяет степень дисбаланса, и указывает на какое место необходимо установить дополнительный груз.

Грузы бывают двух типов:

  • с кронштейном, крепятся на край диска и применяются, как правило, на штампованных дисках;
  • на клеевой основе, удобны для балансировки литых, кованых дисков.

Динамическая

Стоит сразу отметить, что данную услугу может предложить далеко не каждая станция шиномонтажа. Так как оборудование, используемое в большинстве случаев — старое, можно сказать трофейное.

Так для чего нужна динамическая балансировка? Чем шире профиль колеса, тем больше шансов получить динамический дисбаланс при движении, относительно плоскости его вращения.

Финишная

Данный вид балансировки производится уже после основной статической, и по возможности динамической. Под подвешенный автомобиль устанавливается специальное оборудование, балансировочный стенд, колесо раскручивается до скорости 90 км/ч, а автоматика делает замеры, и указывает в каком месте и какой груз необходимо установить. Для данной балансировки нужно оборудование, которым располагают зачастую лишь профессиональные центры шиномонтажа.

Автоматическая

Автоматическая применяется только на грузовых автомобилях и автобусах. Происходит это следующим образом — в колесо засыпается специальные балансировочные гранулы, мелкий бисер, реже песок, ведь у последнего высокий абразивный эффект. Во время движения, под воздействием центробежной силы, балансировочный материал притягивается к внутренней поверхности шины, что приводит к самобалансировке.

На легковом транспорте данный вид балансировки не используется по причине того, что нет возможности определить, сколько именно материала необходимо засыпать в каждое колесо. Дополнительно увеличивается и его вес.

Правильная балансировка колес

Существует ряд правил, выполнение которых гарантирует максимально качественную балансировку.

  1. диск нужно очистить от грязи. Ведь ее зачастую довольно много как на внешней, так и на внутренней части. Автоматика рассчитывает, сколько грамм груза нужно повесить на ту или иную часть колеса. Сбалансировав грязное колесо, вы рискуете потерять баланс на первой же кочке, когда большой кусок грязи отвалится от диска и вся работа пойдет «коту под хвост»;
  2. обязательно нужно снять все старые балансировочные грузы;
  3. ещё достаточно часто встречается ситуация, когда шина просто не встала до конца на свое место. Снаружи это заметить можно не всегда, а вот на балансировку может влиять довольно сильно;
  4. различные пластмассовые колпаки, которые одеваются сразу по выходу из шиномонтажа, так же способны внести дисбаланс в только что сбалансированное колесо.

Как часто стоит делать балансировку колес

Рекомендуемая частота проведения разная. Кто-то говорит, что она необходима каждые 10 тысяч километров, кто-то настаивает на 20 тысячах. Если вы почувствовали, что при движении бьет руль, присутствует излишняя вибрация корпуса, не поленитесь посетить шиномонтаж. Тем самым вы, возможно, сэкономите на более дорогостоящем ремонте.
Надеемся, что после прочтения данной статьи, у вас уже не останется вопросов, зачем нужна балансировка колес, и нужно ли ее делать.

Цель балансировки состоит в устранении неуравновешенности детали сборочной единицы относительно оси ее вращения. Неуравновешенность вращающейся детали приводит к возникновению центробежных сил которые могут быть причиной вибрации узла и всей машины преждевременного выхода из строя подшипников и других деталей. Основными причинами неуравновешенности деталей и узлов могут быть: погрешность формы деталей например овальность; неоднородность и неравномерность распределения материала детали относительно оси ее вращения образованные при...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


БАЛАНСИРОВКА ДЕТАЛЕЙ И УЗЛОВ

Виды неуравновешенности

Балансировка вращающихся частей машин — важный этап технологического процесса сборки машин и оборудования. Цель балансировки состоит в устранении неуравновешенности детали (сборочной единицы) относительно оси ее вращения. Неуравновешенность вращающейся детали приводит к возникновению центробежных сил, которые могут быть причиной вибрации узла и всей машины, преждевременного выхода из строя подшипников и других деталей. Основными причинами неуравновешенности деталей и узлов могут быть: погрешность формы деталей (например, овальность); неоднородность и неравномерность распределения материала детали относительно оси ее вращения, образованные при получении заготовки литьем, сваркой или наплавкой; неравномерное изнашивание и деформация детали в процессе эксплуатации; смещение детали относительно оси вращения из-за погрешности сборки и др.

Неуравновешенность характеризуется дисбалансом — величиной, равной произведению неуравновешенной массы детали или сборочной единицы на расстояние центра масс до оси вращения, а также углом дисбаланса, определяющим угловое расположение центра масс. Различают три вида неуравновешенности вращающихся деталей и узлов: статическую, динамическую и смешанную, как сочетание первых двух.

Статическая неуравновешенность имеет место, если массу тела можно рассматривать как приведенную к одной точке (центру масс), отстоящей на некотором расстоянии от оси вращения (рис. 6.52). Этот вид неуравновешенности характерен для деталей типа дисков, высота которых меньше диаметра (шкивы, зубчатые колеса, маховики, крыльчатки, рабочие колеса насосов и т.п.).

Образующаяся при вращении такой детали центробежная сила Q (Н) определяется по формуле

Q =mω 2 ρ,

где m — масса тела, кг; ω — угловая скорость вращения тела, рад/с; ρ — расстояние от оси вращения до центра массы, м.

На практике обычно принимается, что указанная центробежная сила не должна превышать 4—5 % веса детали.

Неуравновешенность рассматриваемого вида можно обнаружить, не приводя объект во вращение, поэтому она называется статической.

Рис. 6.52. Виды неуравновешенности вращающегося тела: а — статическая; б — динамическая; в — общий случай неуравновешенности

Динамическая неуравновешенность возникает, когда при вращении детали образуются две равные противоположно направленные центробежные силы Q, лежащие в плоскости, проходящей через ось вращения (рис. 6.52, б). Создаваемый ими момент пары сил М (Н) определяется уравнением

М =mω 2 ρa,

где а — расстояние между направлениями действия сил, м.

Динамическая неуравновешенность проявляется при вращении относительно длинных тел, например роторов электрических машин, валов с несколькими установленными зубчатыми колесами и т.п. Она может возникать даже при отсутствии статической неуравновешенности.

Общий случай неуравновешенности, также присущий длинным объектам, характеризуется тем, что на вращающийся объект одновременно действуют приведенная пара центробежных сил S—S (рис. 6.52, в) и приведенная центробежная сила Т. Эти силы можно привести к двум действующим в различных плоскостях силам Р и Q, расположенных, например, для удобства измерения в его опорах. Значения этих сил определяются по формулам:

Р =m 1 ρ 1 ω 2 ;

Q= m 2 ρ 2 ω 2

При вращении детали, кроме реакций от действующих на нее внешних сил, возникают также реакции от неуравновешенных сил Р и Q, что повышает нагрузку на подшипники и сокращает срок их службы.

Для уменьшения неуравновешенности до допустимых значений применяют балансировку вращающихся деталей и узлов, которая включает определение величины и угла дисбаланса и корректировку массы балансируемого изделия путем ее уменьшения или прибавления в определенных местах. В зависимости от вида неуравновешенности различают статическую или динамическую балансировку.

Статическая балансировка

Статической балансировкой достигается совмещение центра массы (центра тяжести объекта) с осью его вращения. Наличие неуравновешенности (дисбаланса) и место ее расположения определяют с помощью специальных устройств двух типов. На устройствах первого типа она определяется без сообщения вращения детали за счет уравновешивания ее дисбаланса, а на устройствах второго типа (балансировочных станках) — путем измерения центробежной силы, создаваемой неуравновешенной массой, поэтому вращение детали обязательно.

В машиностроении обычно применяются, как более простые, устройства первого типа: с двумя горизонтально установленными параллельными призмами (рис. 6.53, а) или двумя парами установленных на подшипниках качения дисков (рис. 6.53, 6), а также балансировочные весы (рис. 6.56). В первых двух случаях (см. рис. 6.53) балансируемую деталь 1 плотно насаживают на оправку 2 или закрепляют концентрично с ней, обычно с помощью раздвижных конусов. Оправку устанавливают на расположенные горизонтально призмы 3 или диски 4.

Метод выявления неуравновешенности зависит от величины дисбаланса. Если крутящий момент, создаваемый неуравновешенной массой относительно оси оправки, превышает момент сопротивления сил трения качению оправки по призмам (случай с явно выраженной неуравновешенностью), то деталь вместе с оправкой будет перекатываться по призмам, пока центр тяжести детали не займет нижнее положение. Закрепив груз массой m на диаметрально противоположной стороне детали, можно ее уравновесить. Для этого также в детали сверлят отверстия, которые заполняют более плотным материалом, например, свинцом. Обычно же уравновешивание обеспечивается удалением части металла с утяжеленной стороны детали (сверлением отверстий на определенную глубину, фрезерованием, спиливанием и т.п.).

Рис. 6.53. Схемы устройств для статической балансировки с призмами (а) и дисками (б); 1 — балансируемый объект; 2 — оправка; 3 — призма; 4 — диск

В обоих случаях для выполнения балансировки детали требуется знать удаляемую или добавляемую к ней массу металла. Для этого деталь с оправкой устанавливают на призмах так, чтобы центр их тяжести располагался и плоскости, проходящей через ось оправки. В диаметрально противоположной точке детали прикрепляют такой груз Q, при котором неуравновешенная масса m может повернуть диск на небольшой (около 10°) угол. Затем оправку с деталью поворачивают в том же направлении на 180° так, чтобы центры приложения груза Q и массы m находились снова в одной горизонтальной плоскости. Если отпустить диск в этом положении, то он повернется в обратном направлении на угол α. Возле груза Q прикрепляют такой добавочный груз q (магнитный или липкий), который воспрепятствовал бы указанному повороту оправки 2 и мог обеспечить ее поворот на такой же малый угол в противоположном направлении.

Зная массы Q и q, определяют искомую массу уравновешивающего груза Q 0 :

Q 0 = Q + q/2.

Для обеспечения балансировки такую массу металла следует добавить к детали в точке приложения груза Q или удалить с детали в диаметрально противоположной точке. Если требуется изменить расчетную массу уравновешивающего груза или точку ее приложения, то пользуются соотношением

Q 0 = Q 1 R,

где г — радиус положения расчетного уравновешивающего груза Q 0 ; Q 1 — масса постоянного уравновешивающего груза; R — расстояние от оси оправки до точки его приложения.

Возможен также случай скрытой статической неуравновешенности, когда момент, создаваемый неуравновешенной массой детали, недостаточен для преодоления момента трения качения между оправкой и призмами, и оправка с деталью при установке на призмы или диски остаются неподвижными.

В этом случае для определения неуравновешенности деталь размечают по окружности на 8—12 равных частей, которые отмечают соответствующими точками, как показано на рис. 6.54. При сложности или невозможности разметки балансируемой детали применяют специальный диск с делениями, который закрепляют неподвижно на конце оправки.

Затем перекатывают оправку с деталью по призмам в направлении, указанном стрелкой, и поочередно совмещают размеченные точки с горизонтальной плоскостью, проходящей через ось вращения оправки. Для каждого из этих положений детали подбирают груз q, который устанавливают на расстоянии г от оси оправки. Под действием этого груза оправка с деталью должна поворачиваться примерно на одинаковый угол (около 10°) в направлении перекатывания по призмам. Положение, для которого величина этого груза минимальна, например 4, определяет плоскость расположения центра неуравновешенной массы G.

Рис. 6.54. Схема определения скрытой неуравновешенности на начальном (а) и завершающем (б) этапах

Затем груз q снимают, и оправку поворачивают на 180° в направлении, указанном на рис. 6.54 стрелкой. В точке 8 на том же расстоянии от оси вращения оправки закрепляют такой груз Q (рис. 6.54, б), который обеспечивает поворот в том же направлении и на такой же угол. Масса Q 0 материала, удаляемого в точке 4 или добавляемого в точке 8 для балансировки детали, определяется из условия ее равновесия:

Q 0 =Gp/r=(Q-g)/2.

При выборе типа устройства следует учитывать, что его чувствительность тем выше, чем меньше сила трения между оправкой и опорами, поэтому более точными являются устройства с балансировочными дисками (см. рис. 6.53, б). Преимуществом этих устройств являются также менее жесткие требования к точности их установки по сравнению с призмами и более удобные и безопасные условия труда, так как при расположении оправки между двумя парами дисков исключается возможность ее падения с балансируемой деталью. Для уменьшения трения в опорах с дисками применяют наложение на них вибраций. Соприкасающиеся поверхности оправки и призм или дисков должны быть точно изготовлены и содержаться в идеальном состоянии. На них не допускаются забоины, следы коррозии и др. дефекты, снижающие чувствительность устройства.

Для ее повышения применяют также балансировочные устройства с аэростатическими опорами (рис. 6.55). В этом случае оправка с изделием находятся во взвешенном состоянии за счет того, что в опору 1 по каналам 2 и 4 подается под определенным давлением сжатый воздух.

Высокую производительность и точность определения неуравновешенности некоторых деталей обеспечивают балансировочные весы (рис. 6.56). Для ряда типов деталей они являются более эффективными по сравнению с призматическими и роликовыми устройствами, так как позволяют непосредственно определять неуравновешенную массу и место ее расположения в детали.

Рис. 6.55. Схема стенда для статической балансировки на воздушной подушке: 1 — опора стенда; 2, 4 — каналы для подвода сжатого воздуха; 3 — оправка

Рис. 6.56. Схема балансировочных весов для небольших (а) и крупногабаритных (6) деталей: 1 — уравновешивающие грузы; 2 — коромысло; 3 — балансируемая деталь

Оправку с закрепленной на ней балансируемой деталью 3 (рис. 6.56, а) устанавливают на правом конце коромысла 2 весов. На левом конце коромысла подвешивают уравновешивающие грузы 1. Если центр тяжести проверяемой детали смещен относительно оси ее вращения, то при различных положениях детали показания весов будут неодинаковыми. Так, при положении центра тяжести детали в точках S1 или S3 (pиc. 6.56, а) весы покажут фактическую массу проверяемой детали. При положении центра тяжести в точке S2 их показания максимальны, а при положении центра тяжести в точке S4 — минимальны. Для определения положения центра тяжести детали показания весов фиксируют, периодически поворачивая ее вокруг своей оси на определенный угол, например, равный 30°.

Дисбаланс изделий типа дисков большого диаметра удобно определять на специальных весах (рис. 6.56, б). Они имеют две расположенные во взаимно перпендикулярных направлениях стрелки и приводятся в уравновешенное (горизонтальное) состояние с помощью грузов, расположенных диаметрально противоположно стрелкам.

Балансируемую деталь устанавливают с помощью специального приспособления на весах так, чтобы ее ось проходила через вершину опоры весов, выполненной в виде конического острия и соответствующего углубления в основании. При наличии у детали дисбаланса весы с деталью отклоняются от горизонтального положения. Перемещая по детали уравновешивающий груз, весы приводят в исходное (горизонтально) положение, контролируя его с помощью стрелок. По массе и положению уравновешивающего груза определяют величину и место нахождения дисбаланса.

Устройства второго типа для статической балансировки основаны на принципе регистрации центробежной силы, возникающей при вращении неотбалансированной детали. Они представляют собой специальные балансировочные станки, схема одного из которых приведена на рис. 6.57. Станок позволяет не только устанавливать наличие дисбаланса, но и устранять его сверлением отверстий.

Балансируемая деталь 1 устанавливается концентрично и закрепляется на столе 9, снабженном угловой шкалой. Двигатель 7 сообщает столу с деталью вращение с угловой частотой ω, поэтому при наличии у детали дисбаланса а возникает центробежная сила, под действием которой и реакции пружин 8 система получает колебательные движения относительно опоры 6. Последние фиксируются измерительным преобразователем (ИП), связанным со счетно-логическим устройством (СЛУ).

В момент максимального отклонения системы вправо СЛУ включает стробоскопическую лампу 4, освещающую угловую шкалу на столе 9, и передает на индикаторное устройство 5 сигнал, пропорциональный дисбалансу. Устройство 5, которое может быть стрелочного или цифрового типа, показывает значение требуемой глубины сверления.

Оператор фиксирует высвечиваемое на экране 3 угловое расположение дисбаланса. После остановки стол поворачивают вручную на требуемый угол и сверлом 2 в детали 1 сверлят отверстие на расстоянии г от оси вращения на глубину, необходимую для обеспечения балансировки детали. Существуют также балансировочные станки, на которых поворот диска в требуемую точку (или несколько точек) для выполнения сверления и процесс сверления выполняются в автоматическом режиме.

Рис. 6.57. Схема станка для статической балансировки: 1 — балансируемая деталь; 2 — сверло; 3 — экран; 4 — стробоскопическая лампа; 5 — индикаторное устройство; 6 — шарнирная опора; 7 — электродвигатель; 8 — пружина; 9 — стол; ИП — измерительный преобразователь; СЛУ — счетно-логическое устройство

Точность статической балансировки характеризуется величиной е 0 ω р , где е 0 — остаточный удельный дисбаланс; ω р - максимальная рабочая частота вращения детали при эксплуатации.

Балансировка на призмах (см. рис. 6.53, а) обеспечивает е 0 = 20—80 мкм, на дисковых опорах (см. рис. 6.53, б) е 0 = 15—25 мкм, в аэростатических опорах (см. рис. 6.55) — е 0 = 3—8 мкм, на станке по рис. 6.57 — е 0 = 1—3 мкм. Международным стандартом МС 1940 предусмотрено 11 классов точности балансировки.

Динамическая балансировка

Статическая балансировка недостаточна для устранения дисбаланса у длинных объектов, когда неуравновешенная масса распределена вдоль оси вращения и не может быть приведена к одному центру. Такие тела подвергаются динамической балансировке.

У динамически отбалансированной детали сумма моментов центробежных сил масс, вращающихся относительно оси детали, равна нулю. Поэтому динамической балансировкой достигают совпадения оси вращения детали с главной осью инерции данной системы.

Если динамически неуравновешенное тело установить на податливые опоры, то при его вращении они совершают колебательные движения, амплитуда которых пропорциональна значению действующих на опоры неуравновешенных центробежных сил Р и Q (рис. 6.58). Способы динамической балансировки основаны на измерении колебаний опор.

Динамическую балансировку каждого конца детали обычно выполняют отдельно. Сначала, например, опору Ι (см. рис. 6.58) оставляют подвижной, а противоположную опору II закрепляют. Поэтому вращающийся объект в этом случае совершает колебательные движения в пределах угла α относительно опоры II только под действием силы Р.

Для повышения точности определения дисбаланса детали амплитуду колебаний опор измеряют при частоте ее вращения, совпадающей с частотой собственных колебаний балансировочной системы, т.е. в условиях резонанса. При динамической балансировке определяют массу и положение грузов, которые следует добавить к детали или удалить с нее. С этой целью применяют специальные балансировочные станки различных моделей в зависимости от массы уравновешиваемых деталей. Балансировка свободного конца детали заключается в определении значения и направления силы Р и устранения ее вредного влияния установкой в определенном месте уравновешивающего груза или удалением определенного количества материала. Затем закрепляют опору Ι, а опору II освобождают и аналогично выполняют балансировку детали со второго конца. Для упрощения конструкции станка подвижной делают обычно одну опору, а возможность балансировки детали с двух концов обеспечивается ее переустановкой на 180°.

Рис. 6.58. Схема колебаний детали при динамической балансировке

На этом принципе основана схема станка (рис. 6.59) для динамической балансировки, аналогичного рассмотренному выше (см. рис. 6.57).

Рис. 6.59. Схема станка для динамической балансировки: 1 — балансируемая деталь; 2 — угловая шкала; 3 — экран; 4 — стробоскопическая лампа; 5 — индикаторное устройство; 6 — пружина; 7 — основание; 8 — опора; 9 — электродвигатель; 10 — электромагнитная муфта; ИП — измерительный преобразователь; СЛУ — счетно-логическое устройство

Устройства ИП, СЛУ, 5,4,3 и угловая шкала 2 имеют то же назначение, что и аналогичные элементы в станке по рис. 6.57.

Балансируемую деталь 1 устанавливают на опоры основания 7, которое может совершать под действием пары сил инерции Q 1 Q 2 и реакции пружины 6 колебания относительно оси 8. Деталь приводится во вращение двигателем 9 через электромагнитную муфту 10, с угловой скоростью ω, несколько большей, чем резонансная частота собственных колебаний системы.

После проведения балансировки детали в плоскости bb ее поворачивают на 180° для проведения балансировки в плоскости аа. О качестве динамической балансировки судят по амплитуде вибрации, допускаемое значение которой указывается в технической документации. Оно зависит от частоты вращения отбалансированной детали и при частоте вращения 1000 мин -1 составляет 0,1 мм, а при 3000 мин -1 — 0,05 мм.

Другие похожие работы, которые могут вас заинтересовать.вшм>

7702. БАЛАНСИРОВКА ДЕТАЛЕЙ (УЗЛОВ) 284.44 KB
Приобретение технических навыков выполнения статистической балансировки ведомого диска сцепления и динамической балансировки коленчатого вала с маховиком и сцеплением в сборе. Содержание работы: ознакомление с технологией балансировки изучение оборудования и оснастки для статистической и динамической балансировки устранение статического дисбаланса ведомого диска сцепления двигателей ЗМЗ и ЗИЛ. Оборудование и оснастка рабочего места: балансировочный станок ЦКБ 2468 приспособление для статической балансировки ведомых дисков сцепления с...
9476. РЕМОНТ ТИПОВЫХ ДЕТАЛЕЙ И УЗЛОВ МАШИН. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ 8.91 MB
Высокая экономическая значимость этого при ремонте машин обусловлена тем что восстановлению подвергаются их наиболее сложные и дорогие детали. Виды технологических процессов восстановления Технологический процесс восстановления детали представляет совокупность действий направленных на изменение ее состояния как ремонтной заготовки с целью восстановления эксплуатационных свойств. Единичный технологический процесс предназначен для восстановления конкретной детали независимо от типа производства Типовой технологический процесс разрабатывается...
9451. ОЧИСТКА МАШИН, УЗЛОВ И ДЕТАЛЕЙ 14.11 MB
Эксплуатационные загрязнения образуются на наружных и внутренних поверхностях машин узлов и деталей. Осадки образуются из продуктов сгорания и физикохимического трансформирования топлива и масла механических примесей продуктов износа деталей и воды. Опыт и исследования показывают что благодаря качественной очистке деталей в процессе их восстановления повышается ресурс отремонтированных машин и возрастает производительность труда.
18894. Пригонка и сборка отдельных деталей и узлов механизма баластного насоса 901.45 KB
Основная часть: Пригонка и сборка отдельных деталей и узлов механизма баластного насоса. Приложения. Даже корректное расположение грузов не всегда может нормализовать и стабилизировать осадку судна в результате чего приходится наполнять его бесполезными с точки зрения реализации грузами. Водяной балласт является самым приемлемым корректирующим грузом на плавсредстве.
1951. Неуравновешенность роторов и их балансировка 159.7 KB
Если вращение ротора сопровождается появлением динамических реакций его подшипников что проявляется в виде вибрации станины то такой ротор называется неуравновешенным. Источником этих динамических реакций является главным образом несимметричное распределение массы ротора по его объему.1 б когда оси пересекаются в центре масс ротора S; Динамическую рис. Если масса ротора распределена относительно оси вращения равномерно то главная центральная ось инерции совпадает с осью вращения и ротор является уравновешенным или идеальным.
4640. МОДЕЛИРОВАНИЕ ЦИФРОВЫХ УЗЛОВ 568.49 KB
На кристаллах современных БИС можно поместить множество функциональных блоков старых ЭВМ вместе с цепями межблочных соединений. Разработка и тестирование таких кристаллов возможно только методами математического моделирования с использованием мощных компьютеров.
15907. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ СТАНЦИЙ И УЗЛОВ 667.65 KB
Железнодорожные станции их классификация 2. Железнодорожные станции их классификация Все железнодорожные линии делятся на перегоны или блок-участки. К ним относятся: разъезды обгонные пункты станции узлы. Станции – обеспечивают движение поездов по графику; отправление всех поездов в строгом соответствии с планом формирования поездов; исправными в техническом и коммерческом отношениях; обеспечивают безопасность движения при выполнении операций по приему отправлению и пропуску поездов производству маневров размещению и креплению грузов...
9483. Сборка узлов с подшипниками скольжения 10.89 MB
Сборка цельных подшипников. Основными факторами влияющими на работу и долговечность подшипника являются точность размеров втулки и шейки вала а также соосность подшипников которая должна быть обеспечена при их сборке. Соосность подшипников проверяется при помощи оптического прибора или контрольного вала который пропускается через все отверстия в корпусе. Шейки контрольного вала должны плотно прилегать к поверхностям подшипников.
11069. Расчет элементов и узлов аппаратуры связи 670.09 KB
В качестве задающего генератора в работе используется схема на биполярном транзисторе с пассивной RC- цепью. Генератор задает колебания с частотой 12.25 кГц и с определенным напряжением 16 В. Нелинейный преобразователь искажает форму сигнала и в его спектре появляются кратные гармоники, интенсивность которых зависит от степени искажения сигнала.
11774. процесс разборки узлов проточной части ТВД 1.24 MB
Перед началом разборки ТВД снимается обшивка всей турбины. Перед вскрытием ТВД должна быть удалена изоляция турбины так как в процессе ремонта производится зачистка под контроль металла цилиндров. Воздушный компрессор и ротор турбины высокого давления в сборе образуют узел компрессора и ротора ТВД.
Статьи по теме