Зарядное устройство для малогабаритных аккумуляторов. Зарядное устройство для автомобильного аккумулятора своими руками. Простое автоматическое зарядное устройство

В настоящее время широко применяются устройства, для автоматической зарядки с аккумуляторов напряжением 6 и 12 В. Опыт эксплуатации аккумуляторов показываете т целесообразность раздельной и независимой зарядки аккумуляторных элементов с напряжением 1.25 В каждый. Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время. Индивидуальная зарядка позволяет наиболее полно восстановить ёмкость каждого аккумулятора. Только за счёт индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50... 100%. Приводиться схема доработанного зарядного устройства. Другое отличие от аналогичных схем использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить света диоды индикации режима непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом естественно, ток заряда, аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы на аналогичную или подбор не приводят к устранению этого явления. Задачу удалось решить, изменив схему включения светодиода, ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного: компаратора LT339 применено менее дефицитная и белее дешевая микросхема сдвоенного компаратора LTЗ93. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2. Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше чем опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал – около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается VТ1 (VT2). Зажигается светодиод VD7 (VD15) зелёного цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивают работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумулятора ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1(VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях электропитания. Как только аккумулятор зарядиться, возрастёт напряжение на инвертирующем входе компаратора, и он переключиться. Зелёный светодиод гаснет, а красный светодиод VD11(VD13) зажигается. Это происходит из-за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания. Поскольку микросхемы компараторов маломощные, из-за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений гистерезис уменьшается. В режиме заряде аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9,VD12 шунтируют светодиоды VD11,VD13, и они не светятся. Как только аккумулятор зарядиться и компаратор перейдёт в другое устойчивое состояние, напряжение на выходе компараторе скачком возрастает, красный светодиод уже не шунтируется и начинает светиться. Настройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зелёный загорится. Подбирая сопротивление резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 ёмкости аккумулятора. Ток, для аккумуляторов ёмкостью 0,6 Ач был установлен около 60 мА. В качестве R3 целесообразно использовать многооборотный подстроечный резистор типа С15-2. Его сопротивление не критично. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы.

Радиоаматор №1 2006г стр. 25

Устройство для зарядки малогабаритных аккумуляторов

На питании малогабаритной аппаратуры от гальванических элементов и батарей при сегодняшних ценах можно буквально разориться. Выгоднее, потратясь один раз, перейти на использование аккумуляторов. Для того чтобы они служили долго, их необходимо правильно эксплуатировать: не разряжать ниже допустимого напряжения, заряжать стабильным током, вовремя прекращать зарядку. Но если за выполнением первого из этих условий приходится следить самому пользователю, то выполнение двух остальных желательно возложить на зарядное устройство. Именно такое устройство и описывается в статье.

При разработке ставилась задача сконструировать устройство, обладающее следующими характеристиками:

  • широкими интервалами изменения зарядного тока и напряжения автоматического прекращения зарядки (АПЗ). обеспечивающими зарядку как отдельных аккумуляторов, применяемых для питания малогабаритной аппаратуры, так и составленных из них батарей при минимальном числе механических переключателей;
  • близкими к равномерным шкалами регуляторов, позволяющими с приемлемой точностью устанавливать зарядный ток и напряжение АПЗ без каких-либо измерительных приборов;
  • высокой стабильностью зарядного тока при изменении сопротивления нагрузки;
  • относительной простотой и хорошей повторяемостью.

Описываемое устройство полностью отвечает этим требованиям. Оно предназначено для зарядки аккумуляторов Д-0,03, Д-0,06. Д-0,125, Д-0,26, Д-0,55. ЦНК-0,45, НКГЦ-1,8, их импортных аналогов и батарей, составленных из них. До выставленного порога включения системы АПЗ аккумулятор заряжается стабилизированным током, не зависящим от типа и числа элементов, при этом напряжение на нем по мере зарядки постепенно растет. После срабатывания системы на аккумуляторе стабильно поддерживается выставленное ранее постоянное напряжение, а зарядный ток уменьшается. Иными словами, перезарядки и разрядки аккумулятора не происходит, и он может оставаться подключенным к устройству длительное время.

Устройство можно использовать в качестве блока питания малогабаритной аппаратуры с регулируемым напряжением от 1,5 до 13 В и защитой от перегрузки и короткого замыкания в нагрузке.

Основные технические характеристики устройства следующие:

  • зарядный ток на пределе "40 мА" - 0...40, на пределе "200 мА" - 40...200 мА;
  • нестабильность зарядного тока при изменении сопротивления нагрузки от 0 до 40 Ом - 2.5 %;
  • пределы регулирования напряжения срабатывания АПЗ - 1,45... 13 В.

Принципиальная схема устройства изображена на рис. 1.

В качестве стабилизатора зарядного тока применен источник тока на транзисторе \Л"4. В зависимости от положения переключателя SA2 ток в нагрузке Iн определяется соотношениями: IН = (UБ - UБЭ)/R10 и IН = (UБ - UБЭ)/(R9 + R10), где UБ - напряжение на базе транзистора VT4 относительно плюсовой шины, В; UБЭ - падение напряжения на его эмиттерном переходе, В; R9, R10 - сопротивления соответствующих резисторов, Ом.

Из этих выражений следует, что. изменяя напряжение на базе транзистора VT4 переменным резистором R8. можно регулировать ток нагрузки в широких пределах. Напряжение на этом резисторе поддерживается неизменным стабилитроном VD6, ток через который, в свою очередь, стабилизирован полевым транзистором VT2. Все это и обеспечивает нестабильность зарядного тока, указанную в технических характеристиках. Применение источника стабильного тока, управляемого напряжением, позволило изменять зарядный ток вплоть до весьма малых значений, иметь близкую к равномерной шкалу регулятора тока (R8) и достаточно просто переключать пределы его регулирования.

Система АПЗ. срабатывающая после достижения предельно допустимого напряжения на аккумуляторе или батарее, включает в себя компаратор на ОУ DA1, электронный ключ на транзисторе VT3, стабилитрон VD5. стабилизатор тока на транзисторе VT1 и резисторах R1 - R4. Индикатором зарядки и ее окончания служит светодиод HL1.

При подключении к устройству разряженного аккумулятора напряжение на нем и неинвертирующем входе ОУ DA1 меньше образцового на инвертирующем, которое установлено переменным резистором R3. По этой причине напряжение на выходе ОУ близко к напряжению общего провода, транзистор VT3 открыт, через аккумулятор течет стабильный ток, значение которого определяется положениями движка переменного резистора R8 и переключателя SA2.

По мере зарядки аккумулятора напряжение на инвертирующем входе ОУ DA1 возрастает. Повышается напряжение и на его выходе, поэтому транзистор VT2 выходит из режима стабилизации тока, VT3 постепенно закрывается и его коллекторный ток уменьшается. Процесс продолжается до тех пор. пока стабилитрон VD6 не перестает стабилизировать напряжение на резисторах R7, R8. С понижением этого напряжения транзистор VT4 начинает закрываться и зарядный ток быстро уменьшается. Его конечное значение определяется суммой тока саморазрядки аккумулятора и тока, текущего через резистор R11. Иными словами, с этого момента на заряженном аккумуляторе поддерживается напряжение, установленное резистором R3, а через аккумулятор течет ток, необходимый для поддержания этого напряжения.

Светодиод HL1 индицирует включение устройства в сеть и две фазы процесса зарядки. При отсутствии аккумулятора на резисторе R11 устанавливается напряжение, определяемое положением движка переменного резистора R3. Для поддержания этого напряжения требуется весьма незначительный ток, поэтому HL1 светится очень слабо. В момент подключения аккумулятора яркость его свечения возрастает до максимальной, а после срабатывания системы АПЗ по окончании зарядки - скачкообразно уменьшается до средней между названными выше. При желании можно ограничиться двумя уровнями свечения (слабое, сильное), для чего достаточно подобрать резистор R6.

Детали устройства смонтированы на печатной плате, чертеж которой показан на рис. 2. Она выполнена методом прорезания фольги и рассчитана на установку постоянных резисторов МЛТ, подстроечного (проволочного) ППЗ-43. конденсаторов К52-1Б (С1) и KM (С2). Транзистор VT4 установлен на теплоотводе с эффективной площадью теплового рассеяния 100 см2. Переменные резисторы R3 и R8 (ППЗ-11 группы А) закреплены на передней панели устройства и снабжены шкалами с соответствующими отметками.

(нажмите для увеличения)

Переключатели SA1 и SA2 - любого типа, желательно, однако, чтобы контакты используемого в качестве SA2 были рассчитаны на коммутацию тока не менее 200 мА.

Сетевой трансформатор Т1 должен обеспечивать на вторичной обмотке переменное напряжение 20 В при токе нагрузки 250 мА.

Полевые транзисторы КП303В можно заменить на КП303Г - КП303И, биполярные КТ361В - на транзисторы серий КТ361. КТ3107, КТ502 с любым буквенным индексом (кроме А), а КТ814Б - на КТ814В, КТ814Г, КТ816В, КТ816Г. Стабилитрон Д813 (VD5) необходимо подобрать с напряжением стабилизации не менее 12,5 В. Вместо него допустимо использовать Д814Д или любые два соединенных последовательно маломощных стабилитрона с суммарным напряжением стабилизации 12,5... 13,5 В. Возможна замена ППЗ-11 (R3, R8) переменными резисторами любого типа группы А, а ППЗ-43 (R10) - подстроенным резистором любого типа с мощностью рассеяния не менее 3 Вт.

Налаживание устройства начинают с подбора яркости свечения светодиода HL1. Для этого переводят переключатели SA1 и SA2 соответственно в положения "13 В" и "40 мА". а движок переменного резистора R8 - в среднее, подключают к гнездам XS1 и XS2 резистор сопротивлением 50... 100 Ом и находят такое положение движка резистора R3. в котором изменяется яркость свечения HL1. Увеличения различия в яркости свечения добиваются подбором резистора R6.

Затем устанавливают границы интервалов регулирования зарядного тока и напряжения АПЗ. Подключив к выходу устройства миллиамперметр с пределом измерения 200...300 мА. переводят движок резистора R8 в нижнее (по схеме) положение, а переключатель SA2 - в положение "200 мА". Изменением сопротивления подстроечного резистора R10 добиваются отклонения стрелки прибора до отметки 200 мА. Затем перемещают движок R8 в верхнее положение и подбором резистора R7 добиваются показаний 36...38 мА. Наконец, переключают SA2 о положение "40 мА". возвращают движок переменного резистора R8 в нижнее положение и подбором R9 устанавливают выходной ток в пределах 43...45 мА.

Для подгонки границ интервала регулирования напряжения АПЗ переключатель SA1 устанавливают в положение "13 В", а к выходу устройства подключают вольтметр постоянного тока с пределом измерения 15...20 В. Подбором резисторов R1 и R4 добиваются показаний 4,5 и 13 В в крайних положениях движка резистора R3. После этого, переведя SA1 в положение "4,5 В", в тех же положениях движка R3 устанавливают стрелку прибора на отметки 1.45 и 4,5 В подбором резистора R2.

В процессе эксплуатации напряжение АПЗ устанавливают из расчета 1,4... 1,45 В на один заряжаемый аккумулятор.

Если устройство не предполагается использовать для питания радиоаппаратуры, индикацию окончания зарядки погасанием светодиода можно заменить его миганием, для чего достаточно ввести в компаратор гистерезис - дополнить устройство резисторами R12, R13 (рис. 3), а резистор R6 удалить.

После такой доработки при достижении установленного значения напряжения АПЗ светодиод HL1 погаснет, а зарядный ток через аккумулятор полностью прекратится. В результате напряжение на нем начнет падать, поэтому вновь включится стабилизатор тока и загорится светодиод HL1. Иными словами, при достижении установленного напряжения HL1 начнет мигать, что иногда более наглядно, чем некая средняя яркость свечения. Характер процесса зарядки аккумулятора в обоих случаях остается неизменным.

Универсальное зарядное устройство для малогабаритных аккумуляторов


С помощью предлагаемого зарядного устройства (ЗУ) можно восстанавливать работоспособность практически всех типов используемых в быту малогабаритных аккумуляторов с номинальным напряжением 1,5 В (например, СЦ-21, СЦ-31, СЦ-32Д-0,26С, Д-0,06, Д-0,06Д, Д-0,1, Д-0,115, Д-0.26Д, Д-0,55С, КНГ-0.35Д, КНГЦ-1Д. ЦНК-0,2, 2Д-0,25, ШКНГ-1Д и т. д.). В ЗУ предусмотрено автоматическое отключение от сети при истекании установленного времени зарядки и при превышении допустимого значения напряжения на аккумуляторе. В ЗУ также предусмотрена индикация значения зарядного тока.

Электронная схема универсального ЗУ приведена на рис. 1; она состоит из пяти различных функциональных узлов:

  • источника постоянного тока;
  • схемы установки продолжительности времени зарядки;
  • схемы для автоматического включения и выключения ЗУ от сети;
  • схемы индикации значения зарядного тока;
  • источника питания.
Источник постоянного тока, выполненный по схеме токового зеркала Уилсона , состоит из транзисторов VT1 VT3 и резисторов Rl — R5. Согласованная пара транзисторов VT1, VT3 тина КТ814 со стороны коллекторов (задняя часть транзистора) с изолирующей прокладкой, прикрепляется друг к другу для поддержания одинакового теплового режима при работе ЗУ.



Рис. 1. Принципиальная схема

Зарядку аккумуляторов можно производить с помощью пяти различных значений зарядного тока: 6, 12, 26, 55 и 100 мА. Ток зарядки выбирается с помощью переключателей SA2—SA5, соответственно подключая одну из групп резисторов Rl — R4 параллельно к R5. Например, при зарядке аккумуляторов СЦ-21, СЦ-31, СЦ-32 для современных электронных наручных часов используется зарядный ток 6 или 12 мА . При зарядке током 6 мА переключатели SA2 -SA5 остаются в положении, показанном на схеме. При зарядном токе 12 мА к резистору R5 с помощью переключателя SA2 параллельно присоединяется резистор R4. а при токе 26 мА к резистору R5 с помощью SA3 параллельно присоединяется резистор R3 и т. д.

Работоспособность аккумуляторов для электронных наручных часов восстанавливается примерно через 1...3 ч после подключения к устройству, при этом, если напряжение на аккумуляторе достигает 2,2...2,3 В, ЗУ автоматически отключается от сети.

Схема для автоматического включения и выключения ЗУ от сети выполнена на транзисторе VT4, диоде VD3, электронном реле K1 и на резисторах R6, R7. Пороговое напряжение 2,2...2,3 В устанавливается с помощью переменного резистора R7. Напряжение на аккумуляторе через диод VD1 и резистор R7 поступает к базе транзистора VT4. Когда напряжение достигает уровня 2,2...2,3 В, транзистор открывается и напряжение на реле К1 уменьшается, контакт К отключает ЗУ от сети. Для включения ЗУ достаточно кратковременного нажатия на SA1. После кратковременного включения SA1 срабатывает реле К1, его контакты К блокируют контакты SA1 и ЗУ подключается к сети.

Схема установки времени зарядки выполнена на микросхемах DD4 К155ЛАЗ, DD2, DD3 К155ИЕ8, DD1 К155ИЕ2. На логических элементах DD4.1, DD4.2, резисторах R9, R10 и на конденсаторе С2 построен генератор низкой частоты. С помощью микросхем К155ИЕ8 выполнены два счетчика делителя входной частоты с коэффициентом деления 64, а на микросхеме К155ИЕ2 - счетчик-делитель с коэффициентом деления 10 . Частоту генератора можно изменить с помощью переменного резистора R10. Меняя частоту генератора, можно регулировать продолжительность зарядки от 2 до 20 ч. Однако, учитывая то, что время продолжительности зарядки почти для всех типов малогабаритных аккумуляторов равно 15 ч, целесообразно жестко устанавливать время зарядки 15 ч. Выходной сигнал, предупреждающий об окончании времени зарядки, — уровень логической 1 через диод VD2 и резистор R7 прикладывается к базе транзистора VT4. Последний, открываясь через контакты реле К1, отключает ЗУ от сети.

Схема индикации значения зарядного тока выполнена с помощью ППЗУ К155РЕЗ, цифровых полупроводниковых индикаторов HL1, HL2 АЛС324Б и резисторов Rll—R19. При этом необходимо в ППЗУ К155РЕЗ предварительно записать программу, приведенную в табл. 1.



На цифровых полупроводниковых индикаторах выводится одно из пяти различных значений зарядного тока, с помощью которого в этот момент производится зарядка аккумулятора. Надо отметить, что при зарядке током 100 мА, так как оно является трехзначным числом, на индикаторах HL1, HL2 высвечивается число 98.

Ввиду того что вход Е (вывод 15) ППЗУ через элемент DD4.3 подключен к генератору низкой частоты, то на индикаторах цифровая информация мигает с частотой генератора. Такой способ индикации значения зарядного тока, во-первых, уменьшает потребляемый ток схемы индикации. Во-вторых, с помощью частоты мигания можно примерно оценить предварительно установленное время зарядки.

Учитывая относительную сложность схемы индикации для радиолюбителей, ее можно исключить из ЗУ. Тогда из схемы исключают микросхему DD5, цифровые полупроводниковые индикаторы HL1, HL2, резисторы Rll — R19 и вторую группу контактов переключателей SA2 — SA5. А при использовании схемы индикации предварительную программу в ППЗУ К155РЕЗ можно записать устройством, описанным в .

Источник питания выполнен по известной схеме на микросхеме DA1 KP142EH5B. Саму микросхему с помощью клея «Момент» или другим способом закрепляют к корпусу трансформатора. В этом случае нет необходимости использовать отдельный теплоотвод для микросхемы DA1.

Детали устройства смонтированы на печатной плате, которая помещена в корпус из полистирола. Сетевая вилка ХР1 укреплена на корпусе. Контакты для подключения дисковых аккумуляторов изготовлены из хозяйственной пластмассовой прищепки (рис. 2).



При правильном монтаже элементов схемы устройство работает сразу. Работу генератора импульсов проверяют с помощью светодиода, показанного пунктирными линиями на рис. 1. Затем для установки времени восстановления, равного 15 ч, с помощью резистора R1 выбирается такая частота следования импульсов, при которой на выходе микросхемы DD3 (на выводе 7) появляется отрицательный импульс через 1,5 мин. Это можно контролировать с помощью светодиода. Показанный пунктирными линиями светодиод отключается от выхода генератора и подключается в период установки времени к выводу 7 микросхемы DD3.

Ток, потребляемый ЗУ, не превышает 350 мА. Для уменьшения мощности вместо микросхем серии К155 можно использовать микросхемы серии К555.

ЛИТЕРАТУРА
1. Xоровиц П., Хилл У. Искусство схемотехники.— М.: Мир, 1989, т. 1.
2. Бондарев В., Руковишников А. Зарядное устройство для малогабаритных элементов.— Радио, 1989, № 3. с. 69.
3. Пузаков А. ПЗУ в спортивной литературе.- Радио, 1982. № 1. с. 22—23.
4. Горошков Б. И. Элементы радиоэлектронных устройств. - М. Радио и связь, 1988.

Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.

Какие аккумуляторные батареи можно заряжать?

Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.

Где ещё можно применить схему?

Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.

Основные достоинства:

  • - Простота: схема содержит всего 4 довольно распространённых компонента.
  • - Полная автономность: контроль тока и напряжения.
  • - Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
  • - Небольшие габариты конечного устройства.
  • - Большой диапазон рабочего напряжения 1,2-37 В.

Недостатки:

  • - Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
  • - При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.

Схема автоматического зарядного устройства

На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» - это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина - это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.



Чтобы контролировать наличие заряда можно воспользоваться схемой, описанной в этой статье - .
Есть ещё схема включения этой микросхемы в одно: и стабилизация тока и напряжения. Но в таком варианте наблюдается не совсем линейная работа, но в некоторых случаях может и сгодиться.
Информативное видео, только не на русском, но формулы расчета понять можно.
Статьи по теме