Водородный автомобиль на столе: самый крутой конструктор. Топливный водородный элемент своими руками. Водородная энергетика: начало большого пути Водород воздушные топливные элементы

Топливный элемент - устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета - электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века - в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории - высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов - катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка - высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины - порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента - он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью - электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку - заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе - являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку нефтяного топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.


Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H 2 => 4H+ + 4e -
Реакция на катоде: O 2 + 4H+ + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: СO 2 + 1/2O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1/2O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2 H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2-).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2- => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2-
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3/2O 2 + 6 H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3/2O 2 => CO 2 + 2H 2 O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4 OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии
Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные
ЩТЭ 50–200°C 40-70% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ - привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.


На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Использование топливных элементов для защиты окружающей среды-утилизация попутного нефтяного газа

Одной из важнейших задач в нефтедобывающей промышленности является утилизация попутного нефтяного газа. Существующие методы утилизации попутного нефтяного газа имеют массу недостатков, основной из них – они экономически невыгодны. Попутный нефтяной газ сжигается, что наносит огромный вред экологии и здоровью людей.

Инновационные теплоэнергетические установки на топливных элементах, использующие попутный нефтяной газ в качестве топлива, открывают путь к радикальному и экономически выгодному решению проблем по утилизации попутного нефтяного газа.

  1. Одно из основных преимуществ установок на топливных элементах заключается в том, что они могут надежно и устойчиво работать на попутном нефтяном газе переменного состава. Благодаря беспламенной химической реакции, лежащей в основе работы топливного элемента, снижение процентного содержания, например метана, вызывает лишь соответствующее уменьшение выходной мощности.
  2. Гибкость по отношению к электрической нагрузке потребителей, перепаду, набросу нагрузки.
  3. Для монтажа и подключения теплоэнергетических установок на топливных ячейках их внедрения не требуются идти на капитальные затраты, т.к. установки легко монтируются на неподготовленные площадки вблизи месторождений, удобны в эксплуатации, надежны и эффективны.
  4. Высокая автоматизация и современный дистанционный контроль не требуют постоянного нахождения персонала на установке.
  5. Простота и техническое совершенство конструкции: отсутствие движущихся частей, трения, систем смазки дает значительные экономические выгоды от эксплуатации установок на топливных элементах.
  6. Потребление воды: отсутствует при температуре окружающей среды до +30 °C и незначительное при более высоких температурах.
  7. Выход воды: отсутствует.
  8. Кроме того, теплоэнергетические установки на топливных элементах не шумят, не вибрируют, не дают вредных выбросов в атмосферу

Я вставляю штуцер заправочного шланга в горловину топливного бака и поворачиваю его на полоборота, чтобы загерметизировать соединение. Щелчок тумблера - и мигание светодиода на заправочной колонке с огромной надписью h3 показывает, что заправка началась. Минута - и бак полон, можно ехать!

Элегантные обводы корпуса, сверхнизкая подвеска, низкопрофильные слики выдают настоящую гоночную породу. Сквозь прозрачную крышку видно хитросплетение трубопроводов и кабелей. Где-то я уже видел подобное решение… Ах да, на Audi R8 сквозь заднее стекло тоже виден двигатель. Но на Audi он традиционный бензиновый, а эта машина работает на водороде. Как и BMW Hydrogen 7, но только, в отличие от последней, здесь внутри нет ДВС. Единственные движущиеся части - рулевой механизм и ротор электромотора. А энергию для него дает топливный элемент. Выпущен этот автомобиль сингапурской компанией Horizon Fuel Cell Technologies, специализирующейся на разработке и производстве топливных элементов. В 2009 году британская компания Riversimple уже представила городской водородомобиль, приводимый в движение топливными элементами Horizon Fuel Cell Technologies. Он разработан в сотрудничестве с Университетами Оксфорда и Крэнфилда. А вот Horizon H-racer 2.0 - сольная разработка.

Топливный элемент представляет собой два пористых электрода, покрытых слоем катализатора и разделенных протонообменной мембраной. Водород на катализаторе анода превращается в протоны и электроны, которые через анод и внешнюю электрическую цепь приходят на катод, где водород и кислород рекомбинируют с образованием воды.

«Поехали!» - по‑гагарински подталкивает меня локтем главный редактор. Но не так быстро: сначала нужно «прогреть» топливный элемент на неполной нагрузке. Переключаю тумблер в режим «warm up» («прогрев») и жду положенное время. Потом на всякий случай дозаправляю бак до полного. Вот теперь поехали: машинка, плавно жужжа двигателем, трогается вперед. Динамика впечатляет, хотя, впрочем, чего еще ждать от электромобиля - момент постоянный на любых оборотах. Хотя и ненадолго - полного бака водорода хватает всего на несколько минут (компания Horizon обещает в ближайшем будущем выпустить новый вариант, в котором водород не запасается в виде газа под давлением, а удерживается пористым материалом в адсорбере). Да и управляется, прямо скажем, не очень - на дистанционном управлении всего две кнопки. Но в любом случае жаль, что это только радиоуправляемая игрушка, которая обошлась нам в $150. Мы бы не отказались покататься на настоящей машине с топливными элементами в качестве энергетической установки.


Бак, эластичная резиновая емкость внутри жесткого кожуха, при заправке растягивается и работает в качестве топливного насоса, «выдавливая» водород в топливный элемент. Чтобы не «перезаправить» бак, один из штуцеров подключен пластиковой трубкой к аварийному клапану сброса давления.


Заправочная колонка

Сделай сам

Машина Horizon H-racer 2.0 поставляется в виде набора для крупноузловой сборки (типа «сделай сам»), купить её можно, например, на «Амазоне». Однако собрать ее несложно - достаточно поставить на место топливную ячейку и закрепить ее винтами, подсоединить шланги к баку для водорода, топливному элементу, заправочной горловине и аварийному клапану, и остается только поставить верхнюю часть корпуса на место, не забыв передний и задний бамперы. В комплекте идет заправочная станция, которая получает водород методом электролиза воды. Питается она от двух батареек АА, а если захочется, чтобы энергия была совсем «чистой», - от солнечных батарей (они тоже входят в комплект).

www.popmech.ru

Как сделать топливный элемент своими руками?

Безусловно, самое простое решение проблемы обеспечения постоянной работы безтопливных систем заключается в приобретении готового вторичного источника энергии на гидравлической или любой другой основе, однако в этом случае избежать дополнительных расходов уж точно не удастся, да и в этом процессе довольно сложно рассмотреть какую-либо идею для полета творческой мысли. Кроме того, выполнить топливный элемент своими руками вовсе не так сложно, как можно подумать на первый взгляд, и при желании с поставленной задачей сможет справиться даже самый малоопытный мастер. К тому же, более чем приятным бонусом станут малые расходы для создания данного элемента, ведь несмотря на всю его пользу и важность, можно будет абсолютно спокойно обойтись уже имеющимися в наличии подручными средствами.

При этом единственный нюанс, который необходимо учитывать перед выполнением поставленной задачи, заключается в том, что своими руками можно изготовить исключительно маломощное приспособление, а воплощение в реальность более усовершенствованных и сложных установок следует все-таки предоставить квалифицированным специалистам. Что касается порядка работы и очередности действий, то в первую очередь следует выполнить корпус, для чего лучше всего использовать толстостенное оргстекло (не менее 5 сантиметров). Для склеивания стенок корпуса и монтажа внутренних перегородок, для которых лучше всего использовать более тонкое оргстекло (хватит и 3 миллиметров) в идеале использовать двухкомпозитный клей, хотя при большом желании качественную спайку можно выполнить самостоятельно, используя следующие пропорции: на 100 грамм хлороформа - 6 граммов стружки из того же оргстекла.

При этом процесс необходимо проводить исключительно под вытяжкой. Для того, чтобы оборудовать корпус так называемой сливной системой, в его передней стенке необходимо осторожно просверлить сквозное отверстие, диаметр которого будет в точности совпадать с габаритами резиновой пробки, служащей, своего рода, прокладкой между корпусом и стеклянной трубочкой слива. Что касается размеров самой трубочки, то в идеале предусматривать ее ширину равной пяти-шести миллиметрам, хотя все зависит от типа проектируемой конструкции. С большей вероятностью можно утверждать, что определенное удивление у потенциальных читателей данной статьи вызовет старый противогаз, приведенный в перечне необходимых элементов для выполнения топливного элемента. Между тем, вся польза данного приспособления кроется в активированном угле, расположенном в отсеках его респиратора, который в дальнейшем можно использовать, как электроды.

Так как речь идет о порошкообразной консистенции, то для усовершенствования конструкции понадобятся чулки из капрона, из которых можно будет легко изготовить мешочек и сложить туда уголь, иначе он будет попросту высыпаться из отверстия. Что касается распределительной функции, то сосредоточение топлива происходит в первой камере, в то время, как кислород, необходимый для нормального функционирования топливного элемента, напротив, будет циркулировать в последнем, пятом отсеке. Сам электролит, расположенный между электродами следует пропитать специальным раствором (бензин с парафином в соотношении 125 на 2 миллилитра), причем делать это нужно еще до закладки воздушного электролита в четвертый отсек. Для обеспечения должной проводимости, поверх угля укладывают медные пластинки с заблаговременно припаянными проводами, через которые электроэнергия будет передаваться от электродов.

Данный этап конструирования можно смело считать завершающим, после проведения которого проводят зарядку готового устройства, для чего понадобится электролит. Для того, чтобы его приготовить, необходимо смешать в равных частях этиловый спирт с дистиллированной водой и приступать к постепенному введению едкого калия из расчета 70 грамм на стакан жидкости. Проведение первого испытания изготовленного устройства заключается в одновременном заполнении первого (топливная жидкость) и третьего (изготовленный из этилового спирта и едкого калия электролит) контейнеров корпуса из оргстекла.

uznay-kak.ru

Водородные топливные элементы | ЛАВЕНТ

Давно хотел рассказать про ещё одно направление компании Альфаинтек. Это разработка, продажа и обслуживание водородных топливных элементов. Сразу хочу объяснить ситуацию с данными топливными элементами в России.

Из-за достаточно высокой стоимости и полного отсутствия водородных станций для зарядки данных топливных элементов, продажа их в России не предполагается. Тем не менее в Европе, особенно в Финляндии, данные топливные элементы с каждым годом набирают популярность. В чём же секрет? Давайте посмотрим. Данное устройство экологически чистое, легкое в эксплуатации и эффективное. Оно приходит на помощь человеку там, где ему необходима электрическая энергия. Вы можете взять его с собой в дорогу, в поход, использовать на даче, в квартире как автономный источник электроэнергии.

Электричество в топливном элементе вырабатывается в результате химической реакции водорода, поступающего из баллона, с гидридом металла и кислородом из воздуха. Баллон не взрывоопасен и может храниться у Вас в шкафу годы, ожидая своего часа. Вот это, пожалуй, одно из главных достоинств данной технологии хранения водорода. Именно хранение водорода является одной из главных проблем в развитии водородного топлива. Уникальные новые легкие топливные элементы, которые преобразуют водород в обычное электричество, безопасно, тихо и без выброса вредных веществ.

Данный вид электричества можно использовать в тех местах, где нет центрального электричества, или как аварийный источник питания.

В отличие от обычных аккумуляторов, которые нужно заряжать и при этом отключать от потребителя электроэнергии в процессе зарядки, топливный элемент работает как «умное» устройство. Данная технология обеспечивает бесперебойное питание в течение всего срока использования благодаря уникальной функции сохранения питания при смене ёмкости с топливом, что позволяет пользователю никогда не выключать потребитель. В закрытом футляре топливные элементы могут храниться на протяжении нескольких лет без потери объема водорода и уменьшения своей мощности.

Топливный элемент предназначен для ученых и исследователей, служб охраны правопорядка, спасателей, владельцев судов и пристаней для яхт, и для всех тех, кому нужен надежный источник питания на случай экстренных ситуаций. Вы можете получить напряжение 12 вольт или 220 вольт и тогда у вас будет достаточно энергии, чтобы использовать телевизор, стереосистему, холодильник, кофеварку, чайник, пылесос, дрель, микроплиту и другие электробытовые приборы.

Топливные элементы Hydrocell могут продаваться как единичное устройство, так и батареями из 2–4 элементов. Два или четыре элемента могут быть объединены либо для увеличения мощности, либо для увеличения силы тока.

ВРЕМЯ РАБОТЫ ЭЛЕКТРОБЫТОВЫХ ПРИБОРОВ С ТОПЛИВНЫМИ ЭЛЕМЕНТАМИ

Электробытовые приборы

Время работы за день (мин.)

Потреб. мощность за день(Вт*ч)

Время работы с топливными элементами

Электрический чайник

Кофеварка

Микроплита

Телевизор

1 лампочка 60W

1 лампочка 75W

3 лампочки 60W

Компьютер ноутбук

Холодильник

Энергосберегающая лампа

* - непрерывная работа

Топливные элементы полностью заряжаются на специальных водородных станциях. Но что, если вы отправляетесь далеко от них и нет возможности подзарядиться? Специально для таких случаев специалисты компании Alfaintek разработали баллоны для хранения водорода, с которыми топливные элементы проработают значительно дольше.

Выпускаются два типа баллонов: НС-МН200 и НС-МН1200.НС-МН200 в сборе имеет размер чуть больше банки для кока-колы, он вмещает в себя 230 литров водорода, что соответствует 40Ач (12V), и весит всего 2,5 кг.Баллон с гидридом металла НС-МН1200 вмещает в себя 1200 литров водорода, что соответствует 220Ач (12V). Вес баллона 11 кг.

Техника применения гидридов металлов является безопасным и легким способом хранения, перевозки и использования водород. При хранении в виде гидрида металла водород находится в форме химического соединения, а не в газообразной форме. Данный метод дает возможность получить достаточно большую плотность энергии. Преимуществом применения гидрида металла является то, что давление внутри баллона составляет всего 2-4 бара.Баллон не взрывоопасен и может храниться годы без снижения объема вещества. Поскольку водород хранится в виде гидрида металла, чистота водорода, полученного из баллона, очень высока - 99,999%. Баллоны для хранения водорода в виде гидрида металла можно использовать не только с топливными элементами HC 100,200,400, но и в других случаях, когда нужен чистый водород. Баллоны можно легко подсоединить к топливному элементу или к другому устройству при помощи быстро соединяющегося разъема и гибкого шланга.

Очень жаль, что данные топливные элементы не продаются в России. А ведь среди нашего населения так много людей, которые нуждаются в таковых. Чтож поживём, увидим, глядишь и у нас появятся. А пока будем покупать навязанные государством энергосберегающие лампочки.

P.S. Похоже тема окончательно ушла в небытиё. Через столько лет после написания этой статьи не вышло ничего. Может я, конечно, не везде ищу, но то, что попадается на глаза совсем не радует. Технология и задумка хорошая, но вот развития пока не нашла.

lavent.ru

Топливный элемент – будущее, которое начинается сегодня!

Начало ХХІ века рассматривает экологию как одну из самых главных мировых задач. И первое, чему следует уделить внимание в сложившихся условиях, это поиск и применение альтернативных источников энергии. Именно они способны препятствовать загрязнению окружающей нас среды, а также полностью отказаться от непрерывно дорожающего топлива на основе углеводорода.

Уже сегодня нашли применение такие источники энергии, как солнечные элементы и ветряные установки. Но, к сожалению, их недостаток связан с зависимостью от погоды, а также от сезона и времени суток. По этой причине от их использования в космонавтике, авиа- и автомобилестроении постепенно отказываются, а для стационарного применения их комплектуют с вторичными источниками питания – аккумуляторами.

Однако лучшим решением является топливный элемент, так как он не требует постоянной энергетической подзарядки. Это устройство, которое способно к переработке и преобразованию различного вида топлива (бензина, спирта, водорода и др.) непосредственно в электрическую энергию.

Топливный элемент работает по следующему принципу: извне подается топливо, которое окисляется кислородом, а выделяемая при этом энергия превращается в электричество. Такой принцип действия обеспечивает практически вечную эксплуатацию.

Начиная с конца ХІХ века ученые изучали непосредственно топливный элемент, и постоянно разрабатывали новые его модификации. Так, на сегодня, в зависимости от условий эксплуатации, существуют алкалиновые или щелочные (AFC), прямые борогидратные (DBFC), электро-гальванические (EGFC), прямые метанольные (DMFC), цинково-воздушные (ZAFC), микробные (MFC), также известны модели на муравьиной кислоте (DFAFC) и на металлических гидридах (MHFC).

Одним из самых перспективных считается водородный топливный элемент. Использование водорода в силовых установках сопровождается значительным выделением энергии, а выхлопы такого устройства – это чистый водяной пар или питьевая вода, которые не несут никакой угрозы окружающей среде.

Успешное испытание топливных элементов данного типа на космических кораблях в последнее время вызвало немалый интерес у производителей электроники и различной техники. Так, компания PolyFuel представила миниатюрный топливный элемент на водородном топливе для ноутбуков. Но слишком высокая стоимость такого устройства и сложности в беспрепятственной его заправке ограничивает промышленный выпуск и широкое распространение. Также компания Honda уже свыше 10 лет выпускает автомобильные топливные элементы. Однако в продажу такой вид транспорта не поступает, а только в служебное пользование сотрудников компании. Автомобили находятся под наблюдением инженеров.

Многие задаются вопросом о том, а возможно ли собрать топливный элемент своими руками. Ведь существенным преимуществом самодельного устройства будет незначительное вложение средств, в отличие от промышленной модели. Для миниатюрной модели понадобится 30 см покрытой платиной никелевой проволоки, небольшой кусочек пластмассы или древесины, клипса для 9-вольтовой батареи и сама батарея, прозрачная липкая лента, стакан воды и вольтметр. Такое устройство позволит увидеть и понять суть работы, но генерировать для автомобиля электроэнергию, конечно же, не получится.

fb.ru

Водородные топливные элементы: немного истории | Водород

В наше время особенно остро стоит проблема дефицита традиционных энергетических ресурсов и ухудшение состояния экологии планеты в целом из-за их использования. Именно поэтому в последнее время значительные финансовые средства и интеллектуальные ресурсы тратятся на разработку потенциально перспективных заменителей углеводородного топлива. Таким заменителем в самое ближайшее время может стать водород, поскольку его использование в силовых установках сопровождается выделением большого количества энергии, а выхлопы представляют собой водяной пар, то есть не представляют опасности для окружающей среды.

Несмотря на некоторые существующие до сих пор технические сложности по внедрению топливных элементов на основе водорода, многие производители автомобилей оценили перспективность технологии и уже активно разрабатывают прототипы серийных автомобилей, способных использовать водород в качестве основного топлива. Еще в две тысячи одиннадцатом концерн Daimler AG представил концептуальные модели Mersedes-Benz с водородными силовыми установками. Кроме того, корейская компания Hyndayi официально заявила, что не намерена больше развивать электрические автомобили, а все усилия сконцентрирует на разработке доступного водородного автомобиля.

Несмотря на то, что сама идея использовать водород в качестве топлива для многих не является дикой, большинство не представляет, как устроены топливные элементы, использующие водород и что в них такого примечательного.

Чтобы понять важность технологии, редлагаем обратиться к истории водородных топливных элементов.

Первым человеком, который описал потенциал использования водорода в топливном элементе, был немец по национальности - Christian Friedrich. Еще в далеком 1838 году он опубликовал свою работу в известном научном журнале того времени.

Уже в следующем году судьей из Ульса, сэром William Robert Grove был создан прототип работоспособной водородной батареи. Однако мощность устройства была слишком маленькой даже по меркам того времени, поэтом о его практическом использовании не могло быть и речи.

Что касается термина «топливный элемент» - он своим существованием обязан ученым Ludwig Mond и Charles Langer, которые в 1889 году предприняли попытку создания топливного элемента, работающего на воздухе и коксовом газе. По другим данным впервые термин был использован William White Jaques, который впервые решил использовать фосфорную кислоту в электролите.

В 1920-х годах в Германии был произведен целый ряд исследований, результатом которых стало открытие твердооксидных топливных элементов и путей использования цикла карбоната. Примечательно, что эти технологии эффективно используются и в наше время.

В 1932 году инженером Francis T Bacon была начата работа по исследованию непосредственно топливных элементов на основе водорода. До него ученые использовали наработанную схему – пористые платиновые электроды помещались в серную кислоту. Очевидный минус подобной схемы заключается, прежде всего, в ее неоправданной дороговизне ввиду использования платины. Кроме того, использование едкой серной кислоты создавало угрозу для здоровья, а порой и жизни, исследователей. Бэйкон решил оптимизировать схему и заменил платину никелем, а в качестве электролита использовал щелочной состав.

Благодаря продуктивной работе по усовершенствованию своей технологии, Бэйкон уже в 1959 году представил широкой публике свой оригинальный водородный топливный элемент, который выдавал 5 кВт и мог питать сварочный аппарат. Представленное устройство он назвал «Bacon Cell».

В октябре того же года был создан уникальный трактор, который работал на водороде и выдавал мощность в двадцать лошадиных сил.

В шестидесятых годах двадцатого столетия американской компанией General Electric разработанная Бэконом схема была усовершенствована и применена для космических программ Apollo и NASA Gemini. Специалисты из NASA пришли к выводу, что использование ядерного реактора слишком дорого, технически сложно и небезопасно. Кроме того, пришлось отказаться от использования аккумуляторов вместе с солнечными батареями из-за их больших габаритов. Решением проблемы стали водородные топливные элементы, которые способны снабжать космический аппарат энергией, а его экипаж чистой водой.

Первый автобус, использующий в качестве топлива водород, был построен еще в 1993 году. А прототипы легковых автомобилей работающих на водородных топливных элементах были представлену уже в 1997 году такими мировыми автомобильными брендами как Toyota и Daimler Benz.

Немного странно, что перспективное экологичное топливо, реализованное пятнадцать лет назад в автомобиле до сих пор не получило повсеместного распространения. Причин этому множество, главными из которых, пожалуй, являются политическая и требовательность к созданию соответствующей инфраструктуры. Будем надеяться, что водород еще скажет свое слово и составит ощутимую конкуренцию электрическим автомобилям.{odnaknopka}

energycraft.org

Создано 14.07.2012 20:44 Автор: Алексей Норкин

Наше материальное общество без энергии не может не только развиваться, но и вообще существовать. Откуда берется энергия? До недавнего времени люди использовали всего один способ ее получения, мы воевали с природой, сжигая добытые трофеи в топках сначала домашних очагов, затем паровозов и мощных тепловых электростанций.

На потребленных современным обывателем киловатт-часах отсутствуют этикетки, где указывалось бы, сколько лет трудилась природа, чтобы цивилизованный человек мог насладиться благами технологий, и сколько лет ей еще предстоит трудиться, чтобы сгладить вред, нанесенный ей такой цивилизацией. Однако в обществе зреет понимание, что рано или поздно иллюзорная идиллия закончится. Все чаще люди изобретают способы обеспечения энергией своих потребностей с минимальным ущербом для природы.

Водородные топливные элементы – Святой Грааль чистой энергии. Они перерабатывают водород, один из распространенных элементов периодической системы и выделяют лишь воду, самое распространенное на планете вещество. Радужную картину портит отсутствие у людей доступа к водороду, как веществу. Его много, но только в связанном состоянии, и добыть его куда сложнее, чем выкачать из недр нефть или выкопать уголь.

Один из вариантов чистого и безвредного для природы получения водорода – микробные топливные элементы (МТБ), использующие микроорганизмы для разложения воды на кислород и водород. Здесь тоже не все гладко. Микробы прекрасно справляются с задачей получения чистого топлива, но для достижения требуемой на практике эффективности МТБ нужен катализатор, ускоряющий одну из химических реакций процесса.

Этот катализатор – драгоценный металл платина, стоимость которого делает использование МТБ экономически неоправданным и практически невозможным.

Ученые из Университета Висконсин-Милуоки нашли замену дорогому катализатору. Вместо платины они предложили использовать дешевые наностержни из комбинации углерода, азота и железа. Новый катализатор представляет собой графитовые стержни с внедренным в поверхностный слой азотом и с сердечниками из карбида железа. В течение трехмесячного тестирования новинки, катализатор продемонстрировал возможности выше, чем у платины. Работа наностержней оказалась более стабильной и управляемой.

И что самое главное, детище университетских ученых значительно дешевле. Так стоимость платиновых катализаторов составляет примерно 60% стоимости МТБ, в то время как расходы на наностержни укладываются в 5% их нынешней цены.

По словам создателя каталитических наностержней профессора Юхонг Чена (Junhong Chen): «Топливные ячейки способны напрямую преобразовывать топливо в электричество. Вместе с ними электрическая энергия из возобновляемых источников может быть доставлена туда, куда необходимо, что чисто, эффективно и устойчиво».

Сейчас профессор Чен вместе со своей командой исследователей занят изучением точных характеристик катализатора. Их цель придать своему изобретению практическую направленность, сделать его пригодным для массового производства и применения.

По материалам Gizmag

www.facepla.net

Водородные топливные элементы и энергетические системы

Автомобиль работающий на воде скоро может стать настоящей реальностью а водородные топливные элементы будут установлены во многих домах...

Технология водородных топливных элементов не нова. Она началась в 1776 году, когда впервые Генри Кавендиш открыл водород во время растворения металлов в разбавленных кислотах. Первый водородный топливный элемент был изобретен уже в 1839 году Уильямом Гроув. С тех пор, водородные топливные элементы постепенно совершенствовались и в настоящее время они устанавливаются в космических челноках, снабжая их энергией и служа источником воды. Сегодня, технология водородных топливных элементов находится на грани появления их на массовом рынке, в автомобилях, домах и в портативных устройствах.

В водородном топливном элементе химическая энергия (в виде водорода и кислорода) преобразуется непосредственно (без горения) в электрическую энергию. Топливный элемент состоит из катода, электродов и анода. Водород подается в к аноду, где он разделяется на протоны и электроны. У протонов и электронов разные маршруты к катоду. Протоны движутся через электрод к катоду, а электроны чтобы добраться до катода проходят вокруг топливных элементов. Это движение создает в последствии используемую электрическую энергию. На другой стороне, протоны водорода и электроны в сочетании с кислородом, образуют воду.

Электролизеры являются одним из способов извлечения водорода из воды. Процесс в основном противоположен тому, что происходит при работе водородного топливного элемента. Электролизер состоит из анода, электрохимической ячейки и катода. Вода и напряжение подаются на анод, который расщепляет воду на водород и кислород. Водород проходит через электрохимическую ячейку к катоду а кислород подаётся к катоду напрямую. Оттуда, водород и кислород могут быть извлечены и сохранены. Во время, когда электричество не требуется производить, скопившийся газ может быть выведен из хранилища и пропущен обратно через топливный элемент.

В качестве топлива эта система использует водород, наверное именно поэтому имеется много мифов о её безопасности. После взрыва "Гинденбурга" многие далёкие от науки люди и даже некоторые учёные стали считать что использование водорода очень опасно. Однако недавние исследования показали, что причина этой трагедии была связана с типом материала, который использовался в строительстве, а не с водородом, который был закачан внутрь. После проведённых испытаний на безопасность хранения водорода было обнаружено, что хранение водорода в топливных элементах является более безопасным, чем хранение бензина в топливном баке автомобиля.

Сколько же стоят современные водородные топливные элементы? В настоящее время компании предлагают водородные топливные системы производящие энергию по цене около $ 3000 за киловатт. Маркетинговые исследования установили, что когда стоимость упадет до $ 1500 за киловатт, потребители на массовом рынке энергоресурсов готовы будут перейти на этот вид топлива.

Автомобили на водородных топливных элементах по-прежнему более дороги, чем автомобили на двигателях внутреннего сгорания, но производители исследуют способы довести цену до сопоставимого уровня. В некоторых отдаленных районах, где нет линий электропередач, использование водорода в качестве топлива или автономное электроснабжение дома может быть более экономичным уже сейчас, чем например создание инфраструктуры для традиционных энергоносителей.

Почему же водородные топливные элементы до сих пор не получили широкого распространения? На данный момент их высокая стоимость является основной проблемой для распространения водородных топливных элементов. Водородные топливные системы на данный момент просто не имеют массового спроса. Однако наука не стоит на месте и уже в скором будущем автомобиль работающий на воде может стать настоящей реальностью.

www.tesla-tehnika.biz

Давно хотел рассказать про ещё одно направление компании Альфаинтек. Это разработка, продажа и обслуживание водородных топливных элементов. Сразу хочу объяснить ситуацию с данными топливными элементами в России.

Из-за достаточно высокой стоимости и полного отсутствия водородных станций для зарядки данных топливных элементов, продажа их в России не предполагается. Тем не менее в Европе, особенно в Финляндии, данные топливные элементы с каждым годом набирают популярность. В чём же секрет? Давайте посмотрим. Данное устройство экологически чистое, легкое в эксплуатации и эффективное. Оно приходит на помощь человеку там, где ему необходима электрическая энергия. Вы можете взять его с собой в дорогу, в поход, использовать на даче, в квартире как автономный источник электроэнергии.

Электричество в топливном элементе вырабатывается в результате химической реакции водорода, поступающего из баллона, с гидридом металла и кислородом из воздуха. Баллон не взрывоопасен и может храниться у Вас в шкафу годы, ожидая своего часа. Вот это, пожалуй, одно из главных достоинств данной технологии хранения водорода. Именно хранение водорода является одной из главных проблем в развитии водородного топлива. Уникальные новые легкие топливные элементы, которые преобразуют водород в обычное электричество, безопасно, тихо и без выброса вредных веществ.

Данный вид электричества можно использовать в тех местах, где нет центрального электричества, или как аварийный источник питания.

В отличие от обычных аккумуляторов, которые нужно заряжать и при этом отключать от потребителя электроэнергии в процессе зарядки, топливный элемент работает как «умное» устройство. Данная технология обеспечивает бесперебойное питание в течение всего срока использования благодаря уникальной функции сохранения питания при смене ёмкости с топливом, что позволяет пользователю никогда не выключать потребитель. В закрытом футляре топливные элементы могут храниться на протяжении нескольких лет без потери объема водорода и уменьшения своей мощности.

Топливный элемент предназначен для ученых и исследователей, служб охраны правопорядка, спасателей, владельцев судов и пристаней для яхт, и для всех тех, кому нужен надежный источник питания на случай экстренных ситуаций.
Вы можете получить напряжение 12 вольт или 220 вольт и тогда у вас будет достаточно энергии, чтобы использовать телевизор, стереосистему, холодильник, кофеварку, чайник, пылесос, дрель, микроплиту и другие электробытовые приборы.

Топливные элементы Hydrocell могут продаваться как единичное устройство, так и батареями из 2–4 элементов. Два или четыре элемента могут быть объединены либо для увеличения мощности, либо для увеличения силы тока.

ВРЕМЯ РАБОТЫ ЭЛЕКТРОБЫТОВЫХ ПРИБОРОВ С ТОПЛИВНЫМИ ЭЛЕМЕНТАМИ

Электробытовые приборы

Время работы за день (мин.)

Потреб. мощность за день(Вт*ч)

Время работы с топливными элементами

Электрический чайник

Кофеварка

Микроплита

Телевизор

1 лампочка 60W

1 лампочка 75W

3 лампочки 60W

Компьютер ноутбук

Холодильник

Энергосберегающая лампа

* — непрерывная работа

Топливные элементы полностью заряжаются на специальных водородных станциях. Но что, если вы отправляетесь далеко от них и нет возможности подзарядиться? Специально для таких случаев специалисты компании Alfaintek разработали баллоны для хранения водорода, с которыми топливные элементы проработают значительно дольше.

Выпускаются два типа баллонов: НС-МН200 и НС-МН1200.
НС-МН200 в сборе имеет размер чуть больше банки для кока-колы, он вмещает в себя 230 литров водорода, что соответствует 40Ач (12V), и весит всего 2,5 кг.
Баллон с гидридом металла НС-МН1200 вмещает в себя 1200 литров водорода, что соответствует 220Ач (12V). Вес баллона 11 кг.

Техника применения гидридов металлов является безопасным и легким способом хранения, перевозки и использования водород. При хранении в виде гидрида металла водород находится в форме химического соединения, а не в газообразной форме. Данный метод дает возможность получить достаточно большую плотность энергии. Преимуществом применения гидрида металла является то, что давление внутри баллона составляет всего 2-4 бара.

Баллон не взрывоопасен и может храниться годы без снижения объема вещества. Поскольку водород хранится в виде гидрида металла, чистота водорода, полученного из баллона, очень высока — 99,999%. Баллоны для хранения водорода в виде гидрида металла можно использовать не только с топливными элементами HC 100,200,400, но и в других случаях, когда нужен чистый водород. Баллоны можно легко подсоединить к топливному элементу или к другому устройству при помощи быстро соединяющегося разъема и гибкого шланга.

Очень жаль, что данные топливные элементы не продаются в России. А ведь среди нашего населения так много людей, которые нуждаются в таковых. Чтож поживём, увидим, глядишь и у нас появятся. А пока будем покупать навязанные государством энергосберегающие лампочки.

P.S. Похоже тема окончательно ушла в небытиё. Через столько лет после написания этой статьи не вышло ничего. Может я, конечно, не везде ищу, но то, что попадается на глаза совсем не радует. Технология и задумка хорошая, но вот развития пока не нашла.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

Статьи по теме